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Abstract. Dynamic multi-coupling coefficients are introduced to describe SU(2) couplings
in quantum many-body systems in which the coupling coefficients of N angular momenta are
parameter-dependent. It is shown that these dynamic multi-coupling coefficients in a spin-
interaction system for arbitrary spin can be determined by solving a set of nonlinear algebraic
equations using an algebraic Bethe ansatz.

Coupling coefficients are important in various quantum many-body problems. The concept
of coupling two angular momenta is well known through standard texts [1–4]. In this case
the coefficients are called either Clebsch–Gordan (CG) coefficients, 3j symbols or Wigner
coefficients—all of which are related to one another by simple phase and/or normalization
factors.

Coefficients for coupling N angular momenta are multi-coupling coefficients. Assume,
for example, that there are N particles in a system. One can easily construct an N -particle
state with good total angular momentum by sequentially coupling, using two-particle coupling
(CG) coefficients, the angular momentum of each particle to the angular momentum of the
previously coupled set. The process starts with two particles and keeps track of all intermediate
angular momentum values. For example, if there are three particles with angular momenta I1,
I2 and I3, respectively, one has

|(I1I2)I12, I3; IMI 〉 =
∑

m1m2m3m12

〈I1m1, I2m2|I12m12〉〈I12m12, I3m3|IMI 〉|I1m1, I2m2, I3m3〉

(1)

where 〈I1m1, I2m2|I12m12〉 is an SU(2) CG coefficient. In this case the intermediate quantum
number I12 can serve as an additional quantum number to distinguish multiple occurrences of
the total angular momentum I . Alternatively, one may change the order of couplings by first
coupling I2 with I3, or I1 with I3. In the latter two cases, I23 or I13, respectively, play the same
role as I12 does in the former case. It is well known that these three distinct couplings schemes
can be transformed into one another using Racah coefficients or, equivalently, 6j symbols.
There is an extensive literature dealing with this problem. The projection technique of Löwdin
has been one of the most popular [5]. In [4], Biedenharn and Louck provide a Wigner operator
method that combines CG couplings with results from the theory of the symmetric groups.
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Other methods can be found in the literature [6–12]. It is important to note, however, that for
arbitrary N and angular momenta I (j) (j = 1, 2, . . . , N), a unique scheme for the construction
of basis vectors with good total angular momentum has not been given, principally because of
unsolved problems relating to the additional labels that are required to specify a basis uniquely.
This challenge is related to the multiplicity of occurrences of irreps of SU(2)× SN in coupled
representations. The only case that has been treated explicitly [4] is N particles with spin 1

2 .
There are some quantum many-body systems for which all intermediate angular momenta

�I (ij) = �I (i) + �I (j) with 1 � i, j � N are broken, while the total angular momentum
�I = ∑

i
�I (i) is conserved. In such cases, straightforward coupling methods are not useful. As

an example, let us consider the N -spin interaction system [13] for which the Hamiltonian may
be written as

Ĥ =
∑
ij

cicj (I+(i)I−(j) + I0(i)I0(j)) −
∑

j

c2
j I0(j) (2)

where ci (i = 1, 2, . . . , N) are assumed to be real but unequal parameters, and Iµ(j) with
µ = 0, +, − are generators of the j th spin. It can be proven that the total spin operators
Iµ = ∑

i Iµ(i) commute with the Hamiltonian Ĥ ,

[Ĥ , Iµ] = 0 for µ = 0, +, −. (3)

Therefore, the total spin I and the quantum number of its third component MI are good
quantum numbers. On the other hand, one can also verify that all the intermediate spins
Iµ(ij) = Iµ(i) + Iµ(j) with i 
= j for N > 2 are not conserved:

[Ĥ , Iµ(ij)] 
= 0 for N > 2. (4)

In the latter case, one cannot use elementary SU(2) pair couplings to obtain final states with
total spin I and projection MI as described in equation (1).

To diagonalize the Hamiltonian (2) and obtain the corresponding eigenstates, we introduce
the SU(2) Kac–Moody algebra with generators Jm

µ (m = 0, 1, 2, . . .) defined by

Jm
µ =

N∑
j=1

cm
j Iµ(j) (5)

which satisfy the following commutation relations:

[Jm
+ , J n

−] = 2Jm+n
0 [Jm

0 , J n
±] = ±Jm+n

± . (6)

Then, Hamiltonian (2) can be rewritten in terms of the generators of the SU(2) Kac–Moody
algebra as follows:

Ĥ = J 1
+ J 1

− + (J 1
0 )2 − J 2

0 . (7)

The lowest-weight state satisfies

Jm
− |0〉 = 0 for m = 0, ±1, ±2, . . . (8)

where

|0〉 = |I1, −I1; I2, −I2; · · · ; IN, −IN 〉 (9)

is the uncoupled lowest-weight state with angular momenta I1, I2, . . . , IN . For convenience,
the lowest-weight state defined in (8) is called the level zero state. Excited states are classified
according to the number of raising operators I+(j) that are applied to the level zero state. If
a state is constructed by applying I+(j) on the level zero state k times, the state is called a
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level k state. It can be proven [13] that up to a normalization constant the level k states of the
Hamiltonian (7) can be written as

|k; η〉 = J+(x
(η)

1 )J+(x
(η)

2 ) · · · J+(x
(η)

k )|0〉 (10)

where

J+(x
(η)

i ) =
N∑

j=1

cjx
(η)

i

1 − x
(η)

i cj

I+(j) (11)

and η is used to distinguish different eigenstates of (7) with the same k. The eigenvalues E(k)

of (7) for the level k states are given by

E(k) =
(

N∑
j=1

Ij cj

)2

−
N∑

j=1

Ij c
2
j − 2

N∑
j=1

Ij cj

k∑
i=1

1

x
(η)

i

+
∑

1�r 
=q�k

2

x
(η)
r x

(η)
q

(12)

where x
(η)

i are determined by the following set of equations:

N∑
j=1

c2
j x

(η)

i Ij

cj x
(η)

i − 1
=
∑
q 
=i

1

x
(η)

i − x
(η)
q

+
N∑

j=1

cj Ij (13)

for i = 1, 2, . . . , k. It should be clear that η is used to denote the ηth set of solutions {x(η)

i } of
equation (13).

Hence, the general level k states can be recognized, up to a normalization constant, as

|k; η〉 = N
∑

1�j1j2···jk�N

k∏
i=1

(
I+(ji)x

(η)

i cji

1 − x
(η)

i cji

)
|0〉

=
∑

m1m2···mN

WI1I2···IN ;η I
m1m2···mN

(c1, c2, . . . , cN)|I1m1; I2m2; · · · ; INmN 〉 (14)

where W
I1I2···IN ;η I
m1m2···mN

(c1, c2, . . . , cN) are defined as dynamic multi-coupling coefficients
(DMCC) that depend on the dynamic parameters cj (j = 1, 2, . . . , N) for N > 2. These
DMCCs reduce to the ordinary multi-coupling coefficients when all dynamic parameters cj

are the same, and to the CG coefficients of SU(2) for N = 2. As has been stated, the
intermediate spins I (ij) for N > 2 are not good quantum numbers when the parameters cj are
unequal. Hence, these quantum numbers cannot be used to distinguish multiple occurrences of
the final spin I in the coupling. However, one can verify that η can serve as a natural additional
quantum number for distinguishing multiple occurrences of a final spin I in this case.

It can be shown that ±∞ are always solutions of equation (13). Furthermore, the basis
vectors (14) and energy eigenvalues remain invariant under a sign change from−∞ to +∞. One
can therefore choose +∞ for the roots x

(η)

i and arrange other roots systematically. For example,
the roots can be arranged as |x(η)

1 | < |x(η)

2 | < · · · < |x(η)
µ | < x

(η)

µ+1 = x
(η)

µ+2 = · · · = x
(η)

k = +∞
if the µth root is a finite complex number. If two roots x

(η)

i , x
(η)

i+1 are conjugate to each other
with a1 ± ia2, where a1 and a2 are real numbers, we always set x

(η)

i = a1 − ia2, x(η)

i+1 = a1 + ia2.
The total spin quantum number is written as

I = I1 + I2 + · · · + IN − t (15)

where t = 0, 1, 2, . . . , p. The maximum integer value of t when t = p should keep the
spin quantum number I a positive integer or half-integer. For t = 0, there is only one set
of solutions with xi = ∞ (i = 1, 2, . . . , k), which corresponds to the highest weight of the
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Kronecker product of SU(2) I1 ⊗ I2 ⊗ · · · ⊗ IN ↓ I with I = ∑N
i=1 Ii . This coincides

with the fact that the highest-weight configuration is always simple. For t = 1, the roots
x

(η)

2 = x
(η)

3 = · · · = x
(η)

k = +∞. While x
(η)

1 should be determined by equation (13), in this
case there are N − 1 sets of solutions with x

(η)

1 (η = 1, 2, . . . , N − 1), which gives multiple
occurrences of the weight I1 + I2 + · · · + IN − 1. For t = p, p finite roots should be obtained
from (13) with x

(η)
p+µ = ∞, µ = 1, 2, . . . , k − p. Using this procedure, one obtains the final

state |I ; η; MI 〉 with total angular momentum I = I1 + I2 + · · · + IN − p and projection (third
component) MI = k − I1 − I2 − · · · − IN .

As an example, let us consider the N = 3 case. Eigenstates with I = I1 + I2 + I3 − 1 and
MI = 1 − I1 − I2 − I3 can be written as

|I ; η; MI 〉 = N (c1

√
2I1(1 − c2x

(η))(1 − c3x
(η))|I1, 1 − I1; I2, −I2; I3, −I3〉

+c2

√
2I2(1 − c1x

(η))(1 − c3x
(η))|I1, −I1; I2, 1 − I2; I3, −I3〉

+c3

√
2I3(1 − c1x

(η))(1 − c2x
(η))|I1, −I1; I2, −I2; I3, 1 − I3〉

)
(16)

where N is a normalization factor given by

N = {
c2

1(1 − c2x
(η))2(1 − c3x

(η))22I1 + c2
2(1 − c1x

(η))2(1 − c3x
(η))22I2

+c2
3(1 − c1x

(η))2(1 − c2x
(η))22I3

}− 1
2 . (17)

One can read the multi-coupling coefficients from (16) as

W
I1,I2,I3;η,I

1−I1,−I2,−I3
= N c1

√
2I1(1 − c2x

(η))(1 − c3x
(η))

W
I1,I2,I3;η,I

−I1,1−I2,−I3
= N c2

√
2I2(1 − c1x

(η))(1 − c3x
(η))

W
I1,I2,I3;η,I

−I1,−I2,1−I3
= N c3

√
2I3(1 − c1x

(η))(1 − c2x
(η))

(18)

where the two different roots x(η) with η = 1, 2 of equation (13) are given by

x(1) = c1I1(c2 + c3) + c2I2(c1 + c3) + c3I3(c1 + c2) − A
2c1c2c3(I1 + I2 + I3)

(19a)

x(2) = c1I1(c2 + c3) + c2I2(c1 + c3) + c3I3(c1 + c2) + A
2c1c2c3(I1 + I2 + I3)

(19b)

where

A = {c2
1(c2 − c3)

2I 2
1 + 2c1c2(c1 − c3)(c2 − c3)I1I2

+c2
2(c1 − c3)

2I 2
2 + 2c1c3(c1 − c2)(c3 − c2)I1I3

+2c2c3(c2 − c1)(c3 − c1)I2I3 + c2
3(c2 − c1)

2I 2
3 } 1

2 (20)

which is invariant under permutation of the indices 1, 2, 3.
Furthermore, one can verify that the number of sets of non-trivial roots x

(η)

i 
= ∞
of equation (13) with k = t and c1 
= c2 
= · · · 
= cN 
= 0 is exactly equal to the
number of occurrence of I = ∑N

j=1 Ij − t in the decomposition of the Kronecker product

I1 ⊗ I2 ⊗ · · · ⊗ IN ↓ I . For example, because there are N − 1 non-trivial roots x
(η)

1 when
k = t = 1, one can conclude that

∑N
j=1 Ij − 1 occurs N − 1 times in the decomposition

of the Kronecker product I1 ⊗ I2 ⊗ · · · ⊗ IN ↓ ∑N
j=1 Ij − 1 for Ij 
= 0 (j = 1, 2, . . . , N).

This result is also valid when cj (j = 1, 2, . . . , N) are all the same, which is consistent with
the results of branching rules of I1 ⊗ I2 ⊗ · · · ⊗ IN ↓ I in the angular momentum theory
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Table 1. The number of occurrences ξ of I = 5
2 − t for t = 0, 1, 2, and the corresponding roots of

equation (13) with c1 = 1, c2 = 2, c3 = 3, c4 = 4, c5 = 5 for the decomposition
( 1

2 ⊗)4 1
2 ↓ I .

(I )ξ t Roots

5
2 0 —( 3

2

)4
1 x

(1)
1 = 0.220 82, x

(2)
1 = 0.295 28

x
(3)
1 = 0.440 84, x

(4)
1 = 0.869 72( 1

2

)5
2 x

(1)
1 = 0.221 78, x

(1)
2 = 0.811 99

x
(2)
1 = 0.223 94, x

(2)
2 = 0.411 67

x
(3)
1 = 0.298 26, x

(3)
2 = 0.799 35

x
(4)
1 = 0.455 77, x

(4)
2 = 0.722 12

x
(5)
1 = 0.310 89 − 0.0322i, x

(5)
2 = 0.310 89 + 0.0322i

Table 2. The number of occurrences ξ of I = 7
2 − t for t = 0, 1, 2, and the corresponding roots

of equation (13) with c1 = 1, c2 = 2, c3 = 3, c4 = 4, c5 = 5 for the decomposition
( 1

2 ⊗)4 3
2 ↓ I .

(I )ξ t Roots

7
2 0 —(

5
2

)4
1 x

(1)
1 = 0.235 53, x

(2)
1 = 0.307 48

x
(3)
1 = 0.456 24, x

(4)
1 = 0.900 75( 3

2

)6
2 x

(1)
1 = 0.235 96, x

(1)
2 = 0.867 40

x
(2)
1 = 0.236 84, x

(2)
2 = 0.437 03

x
(3)
1 = 0.242 28, x

(3)
2 = 0.269 01

x
(4)
1 = 0.309 14, x

(4)
2 = 0.861 33

x
(5)
1 = 0.315 49, x

(5)
2 = 0.407 82

x
(6)
1 = 0.463 37, x

(6)
2 = 0.834 34( 1

2

)4
3 x

(1)
1 = 0.237 26, x

(1)
2 = 0.454 09, x

(1)
3 = 0.708 85

x
(2)
1 = 0.239 73, x

(2)
2 = 0.287 74 − 0.0528i, x

(2)
3 = 0.287 74 + 0.0528i

x
(3)
1 = 0.241 38, x

(3)
2 = 0.277 12, x

(3)
3 = 0.797 11

x
(4)
1 = 0.315 34, x

(4)
2 = 0.443 63, x

(4)
3 = 0.676 68

[1–4]. Although it is not easy to prove this conclusion for t > 1 cases, it can be verified for
any specific case. In tables 1–3 we report three non-trivial examples for decompositions of(

1
2⊗)4 1

2 ,
(

1
2⊗)4 3

2 and 1⊗2⊗3, respectively, and the corresponding roots, which are obtained
by solving equation (13) with ci = i (i = 1, 2, . . . � 5). These examples show that the number
of sets of non-trivial roots x

(η)

i 
= ∞ of equation (13) with k = t and c1 
= c2 
= · · · 
= cN 
= 0
is indeed exactly equal to the number of occurrence of I = ∑N

j=1 Ij − t in the decomposition
of the Kronecker product I1 ⊗ I2 ⊗ · · · ⊗ IN ↓ I . It should also be stated that the DMCCs
derived by equations (13) and (14) are mutually orthogonal with respect to different η values.

In summary, the concept of the dynamic multi-coupling coefficients is introduced to
describe SU(2) dynamic couplings in some quantum many-body systems, in which the
coupling coefficients for N angular momenta are dynamic parameter-dependent and the
intermediate angular momenta are not conserved. We provide an example for evaluation
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Table 3. The number of occurrences ξ of I = 6− t for t = 0, 1, 2, 3, 4, 5, 6 and the corresponding
roots of equation (13) with c1 = 1, c2 = 2, c3 = 3 for the decomposition 1 ⊗ 2 ⊗ 3 ↓ I .

(I )ξ t Roots

6 0 —

(5)2 1 x
(1)
1 = 0.430 96, x

(2)
1 = 0.902 37

(4)3 2 x
(1)
1 = 0.433 95, x

(1)
2 = 0.881 96

x
(2)
1 = 0.434 23 − 0.0273i, x

(2)
2 = 0.434 23 + 0.0273i

x
(3)
1 = 0.941 15 − 0.0531i, x

(3)
2 = 0.941 15 + 0.0531i

(3)3 3 x
(1)
1 = 0.435 91, x

(1)
2 = 0.441 21 − 0.053i, x

(1)
3 = 0.441 21 + 0.053i

x
(2)
1 = 0.436 28, x

(2)
2 = 0.925 59 − 0.0653i, x

(2)
3 = 0.925 59 + 0.0653i

x
(3)
1 = 0.438 67 − 0.026 77i, x

(3)
2 = 0.438 67 + 0.026 77i, x

(3)
3 = 0.850 20

(2)3 4 x
(1)
1 = 0.425 45, x

(1)
2 = 0.430 62 − 0.410 17i

x
(1)
3 = 0.430 62 + 0.410 17i, x

(1)
4 = 0.660 65

x
(2)
1 = 0.441 81 − 0.026i, x

(2)
2 = 0.441 81 + 0.026i

x
(2)
3 = 0.898 19 − 0.0853i, x

(2)
4 = 0.898 19 + 0.0853i

x
(3)
1 = 0.442 2, x

(3)
2 = 0.449 96 − 0.051i

x
(3)
3 = 0.449 96 + 0.051i, x

(3)
4 = 0.792 06

(1)2 5 x
(1)
1 = 0.445 76, x

(1)
2 = 0.4547 − 0.0486i

x
(1)
3 = 0.454 7 + 0.0486i, x

(1)
4 = 0.833 89 − 0.1248i

x
(1)
5 = 0.833 89 + 0.1248i

x
(2)
1 = 0.449 6, x

(2)
2 = 0.457 86 − 0.043i

x
(2)
3 = 0.457 86 + 0.043i, x

(2)
4 = 0.514 23 − 0.12i

x
(2)
5 = 0.514 23 + 0.12i

0 6 x
(1)
1 = 0.449 1 − 0.02i, x

(1)
2 = 0.4491 + 0.02i

x
(1)
3 = 0.468 2 − 0.074i, x

(1)
4 = 0.4682 + 0.074i

x
(1)
5 = 0.582 71 − 0.2965i, x

(1)
6 = 0.582 71 + 0.2965i

of the DMCCs in a spin-interaction system for arbitrary spin value. In this case, the DMCCs
can be determined by solving a set of nonlinear algebraic equations using an algebraic Bethe
ansatz. It may be possible to extend this procedure to higher-rank Lie algebras.
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